微波介電材料及其應用

Microwave Dielectric Materials and its Applications

國立高雄大學化學工程與材料工程學系
教授兼系主任 楊證富

中山電機系陳英忠教授、南台科大鄭建民教授

中華民國九十八年三月二十四日
TOPICS

Introduction
• Background
• Motivation

Theory and Experimental
• AB_2O_6 Microwave Dielectric Ceramics
• Planar Filters

AB_2O_6 Microwave Dielectric Ceramics
• $\text{Zn(TaNb)}_2\text{O}_6$ Ceramics
• $\text{Mg(TaNb)}_2\text{O}_6$ Ceramics
• Discussion

Planar Filters
• Wide-Band/Dual-Band Filters
• Tri-band/Tetra-Band Filters
• Discussion

Conclusions and Future Works
In recent years, microwave dielectric materials have attracted great attention due to their better microwave dielectric characteristics than general microwave substrates, including high dielectric constant (ε_r), high quality factor at microwave frequency ($Q\times f$).

The requirements of the microwave dielectric resonators are:

- High dielectric constant (ε_r).
 - For miniaturization
- High quality factor at microwave frequency ($Q\times f$).
 - For reduction of the loss and performance improvement
- Near-zero temperature coefficient of resonant frequency (τ_f).
 - For stability of the resonant frequency
General Microwave Device Substrates

<table>
<thead>
<tr>
<th>Substrates</th>
<th>Dielectric Constant</th>
<th>Loss Tangent</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR4</td>
<td>4.4</td>
<td>0.02</td>
<td>Very low</td>
</tr>
<tr>
<td>Rogers RO4003</td>
<td>3.38</td>
<td>0.0027</td>
<td>high</td>
</tr>
<tr>
<td>Rogers RO3010</td>
<td>10.2</td>
<td>0.0035</td>
<td>Very high</td>
</tr>
<tr>
<td>Rogers RT/Duroid 6002</td>
<td>2.94</td>
<td>0.0012</td>
<td>high</td>
</tr>
<tr>
<td>Arlon DiClad 880</td>
<td>2.2</td>
<td>0.0009</td>
<td>high</td>
</tr>
<tr>
<td>Rogers RT/Duroid 6006</td>
<td>6.15</td>
<td>0.0019</td>
<td>high</td>
</tr>
<tr>
<td>Rogers RT/Duroid 6010</td>
<td>10.2</td>
<td>0.0023</td>
<td>Very high</td>
</tr>
<tr>
<td>Rogers RO3203</td>
<td>3.02</td>
<td>0.0016</td>
<td>high</td>
</tr>
<tr>
<td>Rogers RT/Duroid 5870</td>
<td>2.33</td>
<td>0.0012</td>
<td>high</td>
</tr>
<tr>
<td>Rogers RT/Duroid 5880</td>
<td>2.2</td>
<td>0.0009</td>
<td>high</td>
</tr>
<tr>
<td>Microwave Dielectric Ceramics</td>
<td>7~300</td>
<td><<0.001</td>
<td>low</td>
</tr>
</tbody>
</table>

- Almost all the microwave devices were fabricated on the FR4, RO, and Duroid substrates.
Introduction -- Background

The tendencies of microwave dielectric materials for high frequency applications

Because $Q \times f = \text{constant}$ for $f < 20 \ \text{GHz}$,

$Q \uparrow \quad f \quad Q \downarrow \quad \text{loss tangent} (= 1/Q) \uparrow$

high $Q \times f$ materials are needed for high frequency applications.

i.e. Microwave dielectric materials, Superconductors.

All the $Q \times f$ value of modern substrates (FR4 and RO) are only 100-5,000 GHz, but the $Q \times f$ value of the microwave dielectric materials are about 10,000-300,000 GHz.

Velocity $v = f \times \lambda = c / \varepsilon_r^{1/2}$, the size of resonators are $\lambda/2$, $\lambda/4$, $\lambda/8$ etc., usually.

For the purpose of miniaturization, high ε_r materials are needed in the future.
Introduction -- Background

General Microwave Dielectric Materials

<table>
<thead>
<tr>
<th>Materials</th>
<th>Dielectric Constant ε_r</th>
<th>$Q\times f$ (GHz)</th>
<th>τ_f (ppm/°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaTiO$_3$</td>
<td>37.96</td>
<td>10,000</td>
<td>+15</td>
</tr>
<tr>
<td>Ba$_2$Ti3O${20}$</td>
<td>30.4</td>
<td>46,000</td>
<td>+5</td>
</tr>
<tr>
<td>(ZrSn)TiO$_4$</td>
<td>38</td>
<td>49,000</td>
<td>≈0</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>9.8</td>
<td>300,000</td>
<td>−55</td>
</tr>
<tr>
<td>Nd$_2$O$_3$-BaO-TiO$_2$-PbO</td>
<td>88</td>
<td>10,000</td>
<td>≈0</td>
</tr>
<tr>
<td>MgTiO$_3$-CaTiO$_3$</td>
<td>221</td>
<td>56,000</td>
<td>+2</td>
</tr>
<tr>
<td>Ba(ZnTa)O$_3$</td>
<td>30</td>
<td>168,000</td>
<td>≈0</td>
</tr>
<tr>
<td>(1-x)Al$_2$O$_3$-xTiO$_2$</td>
<td>7~9.5</td>
<td>5,500~11,000</td>
<td>−60~ +40</td>
</tr>
<tr>
<td>(ZrSn)TiO$_4$</td>
<td>38</td>
<td>49,000</td>
<td>≈0</td>
</tr>
<tr>
<td>Ba(Mg${1/3}$Ta${2/3}$)O$_3$</td>
<td>23~25</td>
<td>200,000</td>
<td>−5</td>
</tr>
<tr>
<td>BiNbO$_4$</td>
<td>48</td>
<td>10,000</td>
<td>0~5</td>
</tr>
<tr>
<td>BaO-Sm$_2$O$_3$-TiO$_2$</td>
<td>75</td>
<td>10,000</td>
<td>≈0</td>
</tr>
<tr>
<td>(PbCa)(ZrTi)O$_3$</td>
<td>120</td>
<td>4,500</td>
<td>+5</td>
</tr>
<tr>
<td>MgNb$_2$O$_6$</td>
<td>21</td>
<td>93,800</td>
<td>−70</td>
</tr>
<tr>
<td>MgTa$_2$O$_6$</td>
<td>30.3</td>
<td>59,600</td>
<td>+30</td>
</tr>
<tr>
<td>ZnNb$_2$O$_6$</td>
<td>23.9</td>
<td>77,270</td>
<td>−58</td>
</tr>
<tr>
<td>ZnTa$_2$O$_6$</td>
<td>36.1</td>
<td>60,180</td>
<td>+9.3</td>
</tr>
<tr>
<td>AB$_2$O$_6$ (A=Mg,Zn;B=Nb,Ta)</td>
<td>20~37</td>
<td>30,000~70,000</td>
<td>≈0</td>
</tr>
</tbody>
</table>
Introduction -- Background

The tendencies of Microwave Devices

- **Miniaturization.**
 - High ε_r Substrates.
 - Structure Modification.

- **Higher Frequency Applications.**
 - High ε_r and High $Q \times f$ materials.

- **Multi-Band** Applications. (number of band ≥ 2)
 - Structure Modification.

- **Wide-Band and Ultra-Wide-Band** Applications.
 - Structure Modification.
 - Increasing of Orders.
 - Tunable Transmission Zeros.

- **Bio-devices and its Applications.**
 - Implantable Devices.

High ε_r and High $Q \times f$ microwave dielectric materials are the most important materials in the future.
AB$_2$O$_6$ Microwave Dielectric Ceramics

- Combine ZnNb$_2$O$_6$ (negative τ_f) and ZnTa$_2$O$_6$ (positive τ_f) to form Zn(TaNb)$_2$O$_6$ ($\tau_f \approx 0$ ppm/°C).

 \[\text{ZnO} + 2x\text{Nb}_2\text{O}_6 + 2(1-x)\text{Ta}_2\text{O}_6 = \text{Zn(Ta}_{1-x}\text{Nb}_x)\text{O}_6 \]

- Combine MgNb$_2$O$_6$ (negative τ_f) and MgTa$_2$O$_6$ (positive τ_f) to form Mg(TaNb)$_2$O$_6$ ($\tau_f \approx 0$ ppm/°C).

 \[\text{MgO} + 2x\text{Nb}_2\text{O}_6 + 2(1-x)\text{Ta}_2\text{O}_6 = \text{Mg(Ta}_{1-x}\text{Nb}_x)\text{O}_6 \]

Planar Filters Fabricated on the AB$_2$O$_6$ Ceramics

- Wide-Band/Dual-Band Bandpass Filters
- Tri-Band/Tetra-Band Bandpass Filters
Introduction -- Motivation

Microwave dielectric properties of ZnTa$_2$O$_6$ and ZnNb$_2$O$_6$ ceramics

<table>
<thead>
<tr>
<th>Materials</th>
<th>Sintering Temperature ($°$C)</th>
<th>$Q \times f$ (GHz)</th>
<th>ε_r</th>
<th>τ_f (ppm/°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnTa$_2$O$_6$</td>
<td>1250</td>
<td>40,500</td>
<td>32.4</td>
<td>8.24</td>
</tr>
<tr>
<td></td>
<td>1300</td>
<td>60,180</td>
<td>36.1</td>
<td>9.31</td>
</tr>
<tr>
<td></td>
<td>1350</td>
<td>58,300</td>
<td>36.7</td>
<td>9.24</td>
</tr>
<tr>
<td>ZnNb$_2$O$_6$</td>
<td>1150</td>
<td>47,500</td>
<td>19.5</td>
<td>-63.2</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>77,270</td>
<td>23.9</td>
<td>-58.2</td>
</tr>
<tr>
<td></td>
<td>1250</td>
<td>78,030</td>
<td>24.2</td>
<td>-57.4</td>
</tr>
</tbody>
</table>

Microwave dielectric properties of MgTa$_2$O$_6$ and MgNb$_2$O$_6$ ceramics

<table>
<thead>
<tr>
<th>Materials</th>
<th>Sintering Temperature ($°$C)</th>
<th>$Q \times f$ (GHz)</th>
<th>ε_r</th>
<th>τ_f (ppm/°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgTa$_2$O$_6$</td>
<td>1,400</td>
<td>28,500</td>
<td>25.2</td>
<td>22.4</td>
</tr>
<tr>
<td></td>
<td>1,450</td>
<td>44,300</td>
<td>28.9</td>
<td>27.1</td>
</tr>
<tr>
<td></td>
<td>1,500</td>
<td>56,900</td>
<td>30.5</td>
<td>28.3</td>
</tr>
<tr>
<td></td>
<td>1,550</td>
<td>58,200</td>
<td>30.6</td>
<td>28.5</td>
</tr>
<tr>
<td>MgNb$_2$O$_6$</td>
<td>1,300</td>
<td>34,100</td>
<td>15.7</td>
<td>-78.0</td>
</tr>
<tr>
<td></td>
<td>1,350</td>
<td>66,500</td>
<td>20.5</td>
<td>-69.1</td>
</tr>
<tr>
<td></td>
<td>1,400</td>
<td>89,900</td>
<td>21.7</td>
<td>-68.5</td>
</tr>
<tr>
<td></td>
<td>1,450</td>
<td>91,500</td>
<td>21.8</td>
<td>-68.3</td>
</tr>
</tbody>
</table>
TOPICS

Introduction
• Background
• Motivation

Theory and Experimental
• \(AB_2O_6\) Microwave Dielectric Ceramics
• Planar Filters

\(AB_2O_6\) Microwave Dielectric Ceramics
• \(Zn(TaNb)_2O_6\) Ceramics
• \(Mg(TaNb)_2O_6\) Ceramics
• Discussion

Planar Filters
• Wide-Band/Dual-Band Filters
• Tri-band/Tetra-Band Filters
• Discussion

Conclusions and Future Works
Theory -- Planar Filters

- Metal microstrip line
- Dielectric substrate ε_r
- Metal ground plane

- E line
- H line

- E line
- Substrate ε_r
- h
Theory -- Planar Filters

(a) Electric coupling

(b) Magnetic coupling

(c) Mixed coupling

National University of Kaohsiung
Theory -- Planar Filters

End-Coupling

Bend

SIR

National University of Kaohsiung
TOPICS

Introduction
 • Background
 • Motivation

Theory and Experimental
 • AB_2O_6 Microwave Dielectric Ceramics
 • Planar Filters

AB_2O_6 Microwave Dielectric Ceramics
 • Zn(TaNb)$_2$O$_6$ Ceramics
 • Mg(TaNb)$_2$O$_6$ Ceramics
 • Discussion

Planar Filters
 • Wide-Band/Dual-Band Filters
 • Tri-band/Tetra-Band Filters
 • Discussion

Conclusions and Future Works
AB_2O_6 Microwave Dielectric Ceramics

ZnTa_{2-x}Nb_xO_6 Ceramics

![X-ray diffraction patterns of ZnTa_2O_6 and ZnNb_2O_6](image)

<table>
<thead>
<tr>
<th>x value</th>
<th>S_T (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 0</td>
<td>1300</td>
</tr>
<tr>
<td>(b) 0.3</td>
<td>1250</td>
</tr>
<tr>
<td>(c) 0.6</td>
<td>1250</td>
</tr>
<tr>
<td>(d) 1.0</td>
<td>1250</td>
</tr>
<tr>
<td>(e) 1.4</td>
<td>1250</td>
</tr>
<tr>
<td>(f) 1.7</td>
<td>1200</td>
</tr>
<tr>
<td>(g) 2.0</td>
<td>1200</td>
</tr>
</tbody>
</table>

o: ZnTa_2O_6 orthorhombic structure
x: ZnNb_2O_6 orthorhombic structure
AB₂O₆ Microwave Dielectric Ceramics

ZnTa₂₋ₓNbₓO₆ Ceramics

- ZnTa₂O₆ (x=0) ceramics sintered at 1300°C reveal a single phase which belongs to orthorhombic structure with space group Pnab(60) and a=5.065 Å, b=17.078 Å, and c=4.694 Å.

- ZnNb₂O₆ (x=2) ceramics sintered at 1200°C reveal a single phase which belongs to orthorhombic structure with space group Pnab(60) and a=5.720 Å, b=14.178 Å, and c=5.306 Å.

- The 2θ shifts to higher values as the Nb₂O₅ content increases, which cause the variations of lattice constants and unit volume.

- The ZnTa₂O₆ and ZnNb₂O₆ ceramics exactly form a solid solution.
AB$_2$O$_6$ Microwave Dielectric Ceramics

ZnTa$_{2-x}$Nb$_x$O$_6$ Ceramics

\[V \times \ln(\varepsilon_r) = \sum V_i \times \ln(\varepsilon_{ri}) \quad (3-2) \]
\[\alpha(\text{AB}_2\text{O}_6) = \alpha(\text{A}^{2+}) + 2\alpha(\text{B}^{5+}) + 6\alpha(\text{O}^{2-}) \quad (3-5) \]

<table>
<thead>
<tr>
<th>Ion polarizability</th>
<th>((\text{Å}^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ta$^{5+}$</td>
<td>4.73</td>
</tr>
<tr>
<td>Nb$^{5+}$</td>
<td>3.97</td>
</tr>
<tr>
<td>Zn$^{2+}$</td>
<td>2.04</td>
</tr>
<tr>
<td>O$^{2-}$</td>
<td>2.01</td>
</tr>
</tbody>
</table>

- As Nb$_2$O$_5$ (X value) increase, the density decrease. The reasons are:
 1. Unit volume
 2. Total mass (Ta>Nb)
AB$_2$O$_6$ Microwave Dielectric Ceramics

ZnTa$_{2-x}$Nb$_x$O$_6$ Ceramics

- 1300°C-sintered ZnTa$_2$O$_6$
- 1250°C-sintered ZnTa$_{1.4}$Nb$_{0.6}$O$_6$
- 1250°C-sintered ZnTa$_{1.0}$Nb$_{1.0}$O$_6$
- 1250°C-sintered ZnTa$_{0.6}$Nb$_{1.4}$O$_6$
- 1200°C-sintered ZnNb$_2$O$_6$
AB$_2$O$_6$ Microwave Dielectric Ceramics

ZnTa$_{2-x}$Nb$_x$O$_6$ Ceramics

<table>
<thead>
<tr>
<th>x</th>
<th>0.0</th>
<th>0.3</th>
<th>0.6</th>
<th>1.0</th>
<th>1.4</th>
<th>1.7</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_T ($^\circ$C)</td>
<td>1300</td>
<td>1250</td>
<td>1250</td>
<td>1250</td>
<td>1250</td>
<td>1200</td>
<td>1200</td>
</tr>
<tr>
<td>Morphology</td>
<td>D</td>
<td>D</td>
<td>D-B</td>
<td>D-B</td>
<td>D-B</td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>

(D: disk-typed grain, B: bar-typed grain)

The appropriate sintering temperature is lowered down as the Nb$_2$O$_5$ content increases, and the grains change gradually from disk-typed to bar-typed.
AB$_2$O$_6$ Microwave Dielectric Ceramics

ZnTa$_{2-x}$Nb$_x$O$_6$ Ceramics

1/Q = $\sum V_i / Q_i$ \hspace{1cm} (3-3)

$\tau_f = \sum V_i \times \tau_{fi}$ \hspace{1cm} (3-4)

- Both bar-typed and disk-typed grains co-exist as $0.6 \leq x \leq 1.4$.

- As the Nb$_2$O$_5$ content increases, both of the estimated and measured τ_f values vary from positive values ($x \leq 0.3$) to negative ones ($x \geq 0.7$).

- This means that a near zero τ_f could be obtained at about $X = 0.3$.
AB$_2$O$_6$ Microwave Dielectric Ceramics

ZnTa$_{1.7}$Nb$_{0.3}$O$_6$ Ceramics

The microwave dielectric properties of ZnTa$_2$O$_6$ ceramics (sintered at 1300°C, $\tau_f=+9.31$ ppm/°C, $\varepsilon_r=36.1$, and $Q\times f=60,180$ GHz) and ZnNb$_2$O$_6$ ceramics (sintered at 1200°C, $\tau_f=-58.2$ ppm/°C, $\varepsilon_r=23.9$, and $Q\times f=77,270$ GHz) are used as the reference data.

τ_f value close to 0 ppm/°C are predicted to be:

0 ppm/°C = $\sum V_i \tau_i = V_1 \tau_1 + V_2 \tau_2 = V_1 \times 9.31 + V_2 \times (-58.2)$

$V_1 / V_2 = -\tau_2 / \tau_1 = 58.2 / 9.31 = 6.25 = (M_1 \times P_1 / d_1) / (M_2 \times P_2 / d_2)$,

where subscripts 1 and 2 denote ZnTa$_2$O$_6$ and ZnNb$_2$O$_6$, respectively, and d, M, and P denote density, molecular weight, and mole ratio, respectively, and $d_1=8.184$ g/cm3, $d_2=5.436$ g/cm3, $M_1=523.276$ g/mole, and $M_2=347.193$ g/mole.

$$\begin{cases} 6.251 = \frac{P_1}{P_2} \\ P_1 + P_2 = 2 \end{cases}$$

$P_1=1.72$
$P_2=0.28$

ZnTa$_{1.72}$Nb$_{0.28}$O$_6$
• Higher sintering temperatures will cause grain growth and fewer pores, which result in higher ε_r and density.
AB₂O₆ Microwave Dielectric Ceramics
Mg(Ta₁₋ₓNbₓ)₂O₆ Ceramics

- For \(x = 0 \) (MgTa₂O₆), the solid solution show tetragonal structure.
- For \(x = 0.15 \), the solid solution has the coexistence of tetragonal and orthorhombic structure.
- For \(0.25 \leq x \leq 1 \), the solid solution exhibits orthorhombic structure.
- The crystalline phase transition (changes from tetragonal to orthorhombic) occurs at a particular composition between \(X=0.1\sim0.2 \).

[+: tetragonal, ×: orthorhombic]
AB$_2$O$_6$ Microwave Dielectric Ceramics

Mg(Ta$_{1-x}$Nb$_x$)$_2$O$_6$ Ceramics

- $X=0$, $S_T=1500^\circ C$
- $X=0.15$, $S_T=1500^\circ C$
- $X=0.35$, $S_T=1450^\circ C$
- $X=0.5$, $S_T=1400^\circ C$
- $X=0.7$, $S_T=1400^\circ C$
- $X=0.85$, $S_T=1350^\circ C$
- $X=1$, $S_T=1300^\circ C$

Bar=5 m
AB$_2$O$_6$ Microwave Dielectric Ceramics

Mg(Ta$_{1-x}$Nb$_x$)$_2$O$_6$ Ceramics

- As S_T increased, the M.D. first increase, and then saturate at a certain temperature.
- The temperatures to reach the saturated density values decrease with the increase of MgNb$_2$O$_6$ content.
- Both of the M.D. and T.D. decrease with the increase of MgNb$_2$O$_6$ content, the lower density values of MgNb$_2$O$_6$ ceramics and the substitution of heavier Ta atoms by lighter Nb atoms are the reason.
- The M.D. can be up to 98.8% at $x = 0.15$, and then critically decreased below 95% at $0.25 \leq x \leq 0.7$. The coexistence of dual-typed grains would be the reason.
- At $0.85 \leq x \leq 1$, because only bar-typed grains existed, the densities are higher than 95.8%.

[+:measured density, ●: theoretical density]
AB$_2$O$_6$ Microwave Dielectric Ceramics

Discussion

The sintering behaviors and microwave dielectric characteristics of AB$_2$O$_6$ ceramics are influenced by the sintering temperature and Nb$_2$O$_5$ content, including grain growth, dielectric constant, quality factor, and τ_f value.

For Zn(Ta$_{1-x}$Nb$_x$)$_2$O$_6$ microwave dielectric ceramics, when the Nb$_2$O$_5$ content increases, the dielectric constant and density decrease, and the τ_f value changes from +9.24 ppm/°C (x=0) to −58.2 ppm/°C (x=1).

The 1300°C-sintered ZnTa$_{1.7}$Nb$_{0.3}$O$_6$ ceramics reveal the optimum microwave dielectric characteristics of $\varepsilon_r = 35.2$, $Q\times f = 53,100$ GHz, and $\tau_f = 3.0$ ppm/°C.
AB$_2$O$_6$ Microwave Dielectric Ceramics

Discussion

For Mg(Ta$_{1-x}$Nb$_x$)$_2$O$_6$ microwave dielectric ceramics, the optimum sintering temperature decreased with the increase of Nb content, and ranged from 1500 to 1300°C as x increased from 0 to 1.

The phases transit from tetragonal (MgTa$_2$O$_6$) to orthorhombic (MgNb$_2$O$_6$) as the Nb content increase, and both structures coexist at 0.1 ≤ x ≤ 0.2.

The saturated τ_f values of Mg(Ta$_{1-x}$Nb$_x$)$_2$O$_6$ ceramics (0.25≤x≤0.35) are all within the range of -4.1~-0.7 ppm/°C.

The 1450°C-sintered MgTa$_{1.5}$Nb$_{0.5}$O$_6$ ceramics reveal the optimum microwave dielectric characteristics of of $\varepsilon_r = 27.9$, $Q\times f = 33,100$ GHz, and $\tau_f = -0.7$ ppm/°C.
TOPICS

Introduction
- Background
- Motivation

Theory and Experimental
- AB_2O_6 Microwave Dielectric Ceramics
- Planar Filters

AB_2O_6 Microwave Dielectric Ceramics
- $\text{Zn(TaNb)}_2\text{O}_6$ Ceramics
- $\text{Mg(TaNb)}_2\text{O}_6$ Ceramics
- Discussion

Planar Filters
- Wide-Band/Dual-Band Filters
- Tri-band/Tetra-Band Filters
- Discussion

Conclusions and Future Works

National University of Kaohsiung
Planar Filters

Motivation 1: Up to now, only few researchers fabricated microwave devices on the Al₂O₃ substrates (εᵣ=9.8, Q×f=300,000 GHz, and τᵣ=-55 ppm/°C). But the τᵣ and εᵣ values of Al₂O₃ still not good enough for the applications in the microwave communication systems.

Motivation 2: The dielectric constant (εᵣ=27.9) of MgTa₁₋₀.₅Nb₀.₅O₆ is greater than Al₂O₃ or any other modern used substrates (FR4 and RO), and this substrates would reduce the size of the devices effectively.

Motivation 3: Even the quality factor of MgTa₁₋₀.₅Nb₀.₅O₆ (Q×f=33,100 GHz) is smaller than Al₂O₃, but comparing to FR4 and RO, this quality is good enough.

Motivation 4: The **combination technique** is adopted to design the wide-band/dual-band/tri-band/tetra-band bandpass filters.
Planar Filters

MgTa\textsubscript{1.5}Nb\textsubscript{0.5}O\textsubscript{6} substrate

Simulated by HFSS

Mask Fabrication

Pattern Screen-printing

Firing (800°C/30min)

Soldering SMA Connectors

Characteristics Measuring (HP8720)

\begin{align*}
\varepsilon_r &= 27.9 \\
Q \times f &= 33,100 \\
\tau_f &= -0.7 \text{ ppm/°C}
\end{align*}
Planar Filters

Wide-Band/Dual-Band Filters

Parallel-coupled Lines

MgTa_{1.5}Nb_{0.5}O_6 substrate \(\varepsilon_t = 27.9 \)
Planar Filters

Wide-Band/Dual-Band Filters

Frequency (GHz)

Magnitude (dB)

Unit:mm

S11

S21

Port 1

Port 2

0.6

0.4

2.4

4

3.2

0.3

13

0.3
Planar Filters

Wide-Band/Dual-Band Filters

Using modified end-coupled structure to generate a dual-band (2.45 / 5.2 GHz) bandpass filter with two transmission zeros

Using a $\lambda/2$ hairpin resonator to generate a zero at the upper skirt of 5.2 GHz

Combining above two structures
Planar Filters

Wide-Band/Dual-Band Filters

Frequency (GHz)

Unit:mm

$S_{21} (\text{dB})$

Frequency (GHz)

Unit:mm

$S_{21} (\text{dB})$

National University of Kaohsiung
Planar Filters

Wide-Band/Dual-Band Filters

Using modified end-coupled structure to generate a dual-band (2.45 / 5.2 GHz) bandpass filter with two transmission zeros

Using a $\lambda/2$ hairpin resonator to generate a zero at the upper skirt of 5.2 GHz

Combining above two structures

Type A

Type B

National University of Kaohsiung
Planar Filters

Discussion—Wide-Band/Dual-Band Filters

![Diagram of Planar Filters]

- Type A

Diagram Description:
- MgTa$_{1.9}$Nb$_{0.5}$O$_5$ substrate
- \(\varepsilon_r = 27.9 \), thickness = 1 mm
- Microstrip line
- Ground plane

Graph:
- Magnitude (dB) vs. Frequency (GHz)
- \(--\) Simulated \(S_{11} \)
- \(---\) Simulated \(S_{21} \)
- \(----\) Measured \(S_{21} \)

Graph Details:
- Frequency range: 1 to 8 GHz
- Magnitude range: -80 dB to 0 dB

National University of Kaohsiung

Planar Filters

Discussion—Wide-Band/Dual-Band Filters

MgTa$_{1.9}$Nb$_{3.3}$O$_6$ substrate
($\varepsilon=27.9$, thickness=1 mm)

Microstrip line

MgTa$_{1.9}$Nb$_{3.3}$O$_6$ substrate, $\varepsilon=27.9$, thickness=1 mm

Ground plane

Type B

National University of Kaohsiung
Planar Filters

Discussion—Wide-Band/Dual-Band Filters

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency (GHz)</th>
<th>Bandwidth (MHz / %)</th>
<th>Insertion Loss (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.45</td>
<td>310 / 12.6 (340 / 13.8)</td>
<td>0.16 (0.18)</td>
</tr>
<tr>
<td>B</td>
<td>2.45</td>
<td>370 / 15.1 (375 / 15.3)</td>
<td>0.14 (0.16)</td>
</tr>
<tr>
<td>A</td>
<td>5.2</td>
<td>1200 / 23 (1210 / 23.2)</td>
<td>0.38 (0.64)</td>
</tr>
<tr>
<td>B</td>
<td>5.2</td>
<td>970 / 18.6 (955 / 18.3)</td>
<td>0.38 (0.72)</td>
</tr>
</tbody>
</table>

Simulated (Measured)

<table>
<thead>
<tr>
<th>Type</th>
<th>Band (GHz)</th>
<th>Bandwidth (MHz)[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11a</td>
<td>5.155.35/5.7255.825</td>
<td>200/100[3.85/1.73]</td>
</tr>
<tr>
<td>802.11b</td>
<td>2.4~2.4835</td>
<td>83.5[3.42]</td>
</tr>
<tr>
<td>802.11g</td>
<td>2.4~2.4835</td>
<td>83.5[3.42]</td>
</tr>
<tr>
<td>GPS</td>
<td>1.57542</td>
<td>20[1.27]</td>
</tr>
<tr>
<td>WiMAX</td>
<td>2.562.69/3.43.69/5.25~5.85</td>
<td>130/290/600[5/8.2/10.8]</td>
</tr>
</tbody>
</table>
Planar Filters

Tri-band/Tetra-Band Filters

- Use an outer-frame structure to generate 1.57 GHz
- Use a $\lambda/2$ U-shaped resonator to generate 2.45 GHz
- Use a modified $\lambda/2$ end-coupled structure to generate 2.45 and 5.2 GHz
- Use Defected Ground Structure (DGS) to modify 3.5 GHz.

- Tri-band Bandpass Filters (1.57/2.45/5.2 GHz)
- Tetra-band Bandpass Filters (1.57/2.45/3.5/5.2 GHz)

National University of Kaohsiung
Planar Filters

Tri-band/Tetra-Band Filters

Magnitude (dB)

Port 1

Port 2

Frequency (GHz)

National University of Kaohsiung
Planar Filters

Tri-band/Tetra-Band Filters

Use an outer-frame structure to generate 1.57 GHz

Use a $\lambda/2$ U-shaped resonator to generate 2.45 GHz

Combined

Use a modified $\lambda/2$ end-coupled structure to generate 2.45 and 5.2 GHz

Tri-band Bandpass Filters (1.57/2.45/5.2 GHz)

Use Defected Ground Structure (DGS) to modify 3.5 GHz.

Tetra-band Bandpass Filters (1.57/2.45/3.5/5.2 GHz)

National University of Kaohsiung
Planar Filters

Tri-band/Tetra-Band Filters

Magnitude (dB)

Frequency (GHz)

Port 1

Port 2

S11

S21

National University of Kaohsiung
Planar Filters

Tri-band/Tetra-Band Filters

Use an outer-frame structure to generate 1.57 GHz

Use a $\lambda/2$ U-shaped resonator to generate 2.45 GHz

Combined

Tri-band Bandpass Filters
(1.57/2.45/5.2 GHz)

Use Defected Ground Structure (DGS) to modify 3.5 GHz.

Tetra-band Bandpass Filters
(1.57/2.45/3.5/5.2 GHz)

Use a modified $\lambda/2$ end-coupled structure to generate 2.45 and 5.2 GHz

National University of Kaohsiung
Planar Filters

Tri-band/Tetra-Band Filters

Magnitude (dB)

Frequency (GHz)

National University of Kaohsiung
Planar Filters

Tri-band/Tetra-Band Filters

- Use an outer-frame structure to generate 1.57 GHz
- Use a $\lambda/2$ U-shaped resonator to generate 2.45 GHz
- Use a modified $\lambda/2$ end-coupled structure to generate 2.45 and 5.2 GHz

Combined

- Tri-band Bandpass Filters (1.57/2.45/5.2 GHz)
- Use Defected Ground Structure (DGS) to modify 3.5 GHz

- Tetra-band Bandpass Filters (1.57/2.45/3.5/5.2 GHz)

National University of Kaohsiung
Planar Filters

Tri-band/Tetra-Band Filters

Frequency (GHz)

Magnitude (dB)

National University of Kaohsiung
Planar Filters

Tri-band/Tetra-Band Filters

Magnitude (dB)

Frequency (GHz)

National University of Kaohsiung
Planar Filters

Tri-band/Tetra-Band Filters

- Use an outer-frame structure to generate 1.57 GHz
- Use a λ/2 U-shaped resonator to generate 2.45 GHz
- Use Defected Ground Structure (DGS) to modify 3.5 GHz
- Use a modified λ/2 end-coupled structure to generate 2.45 and 5.2 GHz

Combined

Tri-band Bandpass Filters (1.57/2.45/5.2 GHz)

Tetra-band Bandpass Filters (1.57/2.45/3.5/5.2 GHz)

National University of Kaohsiung
Planar Filters

Tri-band/Tetra-Band Filters

\[S_{21} \text{ (dB)} \]

Frequency (GHz)

3 3.5 4 4.5

-50 -40 -30 -20 -10 0

W = 0.3 mm
W = 0.5 mm
W = 0.7 mm

National University of Kaohsiung
Planar Filters

Tri-band/Tetra-Band Filters

- DGS (ground plane)
- \(\lambda/2 \) resonator
- End-coupled
- Microstrip line
- SIR
- Outer-frame
- High impedance resonator
- U-shaped resonator

Size: 26.3mm \(\times \) 9.9mm
National University of Kaohsiung
Planar Filters

Tri-band/Tetra-Band Filters

Magnitude (dB)

-60 -50 -40 -30 -20 -10 0

Frequency (GHz)

1 2 3 4 5 6 7

S_{11} S_{21}

Port 1 Port 2

National University of Kaohsiung
TOPICS

Introduction
- Background
- Motivation

Theory and Experimental
- AB_2O_6 Microwave Dielectric Ceramics
- Planar Filters

AB_2O_6 Microwave Dielectric Ceramics
- $\text{Zn(TaNb)}_2\text{O}_6$ Ceramics
- $\text{Mg(TaNb)}_2\text{O}_6$ Ceramics
- Discussion

Planar Filters
- Wide-Band/Dual-Band Filters
- Tri-band/Tetra-Band Filters
- Discussion

Conclusions and Future Works

National University of Kaohsiung
Planar Filters

Top-view

Ground Plane

National University of Kaohsiung
Planar Filters

Discussion—Tri-band/Tetra-Band Filters

The diagram shows the frequency response of Planar Filters with the following key points:

- **S21 (dB)**: The vertical axis represents the signal-to-noise ratio in decibels.
- **Frequency (GHz)**: The horizontal axis represents the frequency in gigahertz.
- **Key Frequencies**:
 - 1.57 GHz
 - 2.45 GHz
 - 3.5 GHz
 - 5.2 GHz

The plot compares the simulated and measured data, with the simulated data shown as dashed lines and the measured data as solid lines. The graph indicates a good match between simulation and measurement across the specified frequency bands.
Conclusions-- Paper Review---- Tri-band filter

(Pattern I)

(Pattern II)

Paper 1

National University of Kaohsiung
Conclusions

Paper 2

IEEE Microwave and Wireless Components Letters, 16 (2006) 594

National University of Kaohsiung
Comparing with the Lectures

<table>
<thead>
<tr>
<th></th>
<th>Frequency (GHz)</th>
<th>Bandwidth (%)</th>
<th>Loss (dB)</th>
<th>Size (mm×mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper 1 (Pattern I)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>4</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td>4</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.1</td>
<td>6</td>
<td>2.3</td>
<td>≈50×35</td>
</tr>
<tr>
<td>Paper 1 (Pattern II)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>3.8</td>
<td>2.5</td>
<td>≈60×40</td>
</tr>
<tr>
<td></td>
<td>3.7</td>
<td>6.8</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.3</td>
<td>5</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>Paper 2</td>
<td>1.57</td>
<td>8.2</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.45</td>
<td>7.3</td>
<td>1.34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td>9.9</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>My Tetra-Band Filter</td>
<td>1.57</td>
<td>9.55</td>
<td>0.31</td>
<td>26.3×9.9</td>
</tr>
<tr>
<td></td>
<td>2.45</td>
<td>31.84</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>11.1</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td>15.96</td>
<td>0.78</td>
<td></td>
</tr>
</tbody>
</table>

National University of Kaohsiung
Planar Filters

Discussion—Tri-band/Tetra-Band Filters

<table>
<thead>
<tr>
<th>Frequency (GHz)</th>
<th>Bandwidth (MHz / %)</th>
<th>Insertion Loss (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.57</td>
<td>130 / 8.3 (150 / 9.55)</td>
<td>0.19 (0.31)</td>
</tr>
<tr>
<td>2.45</td>
<td>760 / 31 (780 / 31.84)</td>
<td>0.18 (0.32)</td>
</tr>
<tr>
<td>3.5</td>
<td>380 / 10.8 (390 / 11.1)</td>
<td>0.24 (0.31)</td>
</tr>
<tr>
<td>5.2</td>
<td>750 / 14.1 (830 / 15.96)</td>
<td>0.59 (0.78)</td>
</tr>
</tbody>
</table>

Simulated (Measured)

<table>
<thead>
<tr>
<th>Type</th>
<th>Band (GHz)</th>
<th>Bandwidth (MHz) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11a</td>
<td>5.155.35/5.7255.825</td>
<td>200/100 [3.85/1.73]</td>
</tr>
<tr>
<td>802.11b</td>
<td>2.4~2.4835</td>
<td>83.5 [3.42]</td>
</tr>
<tr>
<td>802.11g</td>
<td>2.4~2.4835</td>
<td>83.5 [3.42]</td>
</tr>
<tr>
<td>GPS</td>
<td>1.57542</td>
<td>20 [1.27]</td>
</tr>
<tr>
<td>WiMAX</td>
<td>2.562.69/3.43.69/5.25~5.85</td>
<td>130/290/600 [5/8.2/10.8]</td>
</tr>
</tbody>
</table>

National University of Kaohsiung
TOPICS

Introduction
• Background
• Motivation

Theory and Experimental
• AB_2O_6 Microwave Dielectric Ceramics
• Planar Filters

AB_2O_6 Microwave Dielectric Ceramics
• $\text{Zn(TaNb)}_2\text{O}_6$ Ceramics
• $\text{Mg(TaNb)}_2\text{O}_6$ Ceramics
• Discussion

Planar Filters
• Wide-Band/Dual-Band Filters
• Tri-band/Tetra-Band Filters
• Discussion

Conclusions and Future Works
Conclusions—Wide-Band/Dual-Band Filters

The optimum measured characteristics of the dual-band filters are:

Type A:
- 2.45 GHz: Bandwidth **340 MHz (13.8%)**; Insertion loss **0.18 dB**.
- 5.2 GHz: Bandwidth **1210 MHz (23.2%)**; Insertion loss **0.64 dB**.

Type B:
- 2.45 GHz: Bandwidth **375 MHz (15.3%)**; Insertion loss **0.16 dB**.
- 5.2 GHz: Bandwidth **955 MHz (18.3%)**; Insertion loss **0.72 dB**.

Using the combination technique and high dielectric constant substrates, the filters are designed easily and the size could be miniaturized to **26.3 mm × 3.7 mm** for Type A and **26.3 mm × 5.5 mm** for Type B.
Conclusions—Tri-Band/Tetra-Band Filters

Up to **six** deeply transmission zeros were generated between the pass bands to improve the performance of the filters (1~7 GHz).

The optimum measured characteristics of these four pass bands are:

- 1.57 GHz: Bandwidth **150 MHz** (9.55%); Insertion loss **0.31 dB**.
- 2.45 GHz: Bandwidth **780 MHz** (31.84%); Insertion loss **0.32 dB**.
- 3.5 GHz: Bandwidth **390 MHz** (11.1%); Insertion loss **0.31 dB**.
- 5.2 GHz: Bandwidth **830 MHz** (15.96%); Insertion loss **0.78 dB**.

Using the combination technique and high dielectric constant substrates, the filters are designed easily and the size could be miniaturized to only **26.3 mm × 9.9 mm**.

The microwave dielectric ceramic substrate would be an important microwave substrate for the development of higher frequency microwave devices in the future.
Q & A

Thanks for Your Attentions